Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Lancet Respir Med ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20240477
2.
Crit Care Med ; 2023 May 16.
Article in English | MEDLINE | ID: covidwho-2320088

ABSTRACT

OBJECTIVES: Although COVID-19 vaccines can reduce the need for intensive care unit admission in COVID-19, their effect on outcomes in critical illness remains unclear. We evaluated outcomes in vaccinated patients admitted to the ICU with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and the association between vaccination and booster status on clinical outcomes. DESIGN: Retrospective cohort. SETTING AND PATIENTS: All patients were admitted to an ICU between January 2021 (after vaccination was available) and July 2022 with a diagnosis of COVID-19 based on a SARS-CoV-2 polymerase chain reaction test in Alberta, Canada. INTERVENTIONS: None. MEASUREMENT: The propensity-matched primary outcome of all-cause in-hospital mortality was compared between vaccinated and unvaccinated patients, and vaccinated patients were stratified by booster dosing. Secondary outcomes were mechanical ventilation (MV) duration ICU length of stay (LOS). MAIN RESULTS: The study included 3,293 patients: 743 (22.6%) were fully vaccinated (54.6% with booster), 166 (5.0%) were partially vaccinated, and 2,384 (72.4%) were unvaccinated. Unvaccinated patients were more likely to require invasive MV (78.4% vs 68.2%), vasopressor use (71.1% vs 66.6%), and extracorporeal membrane oxygenation (2.1% vs 0.5%). In a propensity-matched analysis, in-hospital mortality was similar (31.8% vs 34.0%, adjusted odds ratio [OR], 1.25; 95% CI, 0.97-1.61), but median duration MV (7.6 vs 4.7 d; p < 0.001) and ICU LOS (6.6 vs 5.2 d; p < 0.001) were longer in unvaccinated compared to fully vaccinated patients. Among vaccinated patients, greater than or equal to 1 booster had lower in-hospital mortality (25.5% vs 40.9%; adjusted OR, 0.50; 95% CI, 0.0.36-0.68) and duration of MV (3.8 vs 5.6 d; p = 0.025). CONCLUSIONS: Nearly one in four patients admitted to the ICU with COVID-19 after widespread COVID-19 vaccine availability represented a vaccine-breakthrough case. Mortality risk remains substantial in vaccinated patients and similar between vaccinated and unvaccinated patients after the onset of critical illness. However, COVID-19 vaccination is associated with reduced ICU resource utilization and booster dosing may increase survivability from COVID-19-related critical illness.

6.
MMWR Morb Mortal Wkly Rep ; 71(37): 1182-1189, 2022 Sep 16.
Article in English | MEDLINE | ID: covidwho-2030396

ABSTRACT

The risk for COVID-19-associated mortality increases with age, disability, and underlying medical conditions (1). Early in the emergence of the Omicron variant of SARS-CoV-2, the virus that causes COVID-19, mortality among hospitalized COVID-19 patients was lower than that during previous pandemic peaks (2-5), and some health authorities reported that a substantial proportion of COVID-19 hospitalizations were not primarily for COVID-19-related illness,* which might account for the lower mortality among hospitalized patients. Using a large hospital administrative database, CDC assessed in-hospital mortality risk overall and by demographic and clinical characteristics during the Delta (July-October 2021), early Omicron (January-March 2022), and later Omicron (April-June 2022) variant periods† among patients hospitalized primarily for COVID-19. Model-estimated adjusted mortality risk differences (aMRDs) (measures of absolute risk) and adjusted mortality risk ratios (aMRRs) (measures of relative risk) for in-hospital death were calculated comparing the early and later Omicron periods with the Delta period. Crude mortality risk (cMR) (deaths per 100 patients hospitalized primarily for COVID-19) was lower during the early Omicron (13.1) and later Omicron (4.9) periods than during the Delta (15.1) period (p<0.001). Adjusted mortality risk was lower during the Omicron periods than during the Delta period for patients aged ≥18 years, males and females, all racial and ethnic groups, persons with and without disabilities, and those with one or more underlying medical conditions, as indicated by significant aMRDs and aMRRs (p<0.05). During the later Omicron period, 81.9% of in-hospital deaths occurred among adults aged ≥65 years and 73.4% occurred among persons with three or more underlying medical conditions. Vaccination, early treatment, and appropriate nonpharmaceutical interventions remain important public health priorities for preventing COVID-19 deaths, especially among persons most at risk.


Subject(s)
COVID-19 , Pandemics , Adolescent , Adult , Female , Hospital Mortality , Hospitalization , Humans , Male , SARS-CoV-2 , United States/epidemiology
8.
Ann Intern Med ; 174(9): 1240-1251, 2021 09.
Article in English | MEDLINE | ID: covidwho-1789654

ABSTRACT

BACKGROUND: Several U.S. hospitals had surges in COVID-19 caseload, but their effect on COVID-19 survival rates remains unclear, especially independent of temporal changes in survival. OBJECTIVE: To determine the association between hospitals' severity-weighted COVID-19 caseload and COVID-19 mortality risk and identify effect modifiers of this relationship. DESIGN: Retrospective cohort study. (ClinicalTrials.gov: NCT04688372). SETTING: 558 U.S. hospitals in the Premier Healthcare Database. PARTICIPANTS: Adult COVID-19-coded inpatients admitted from March to August 2020 with discharge dispositions by October 2020. MEASUREMENTS: Each hospital-month was stratified by percentile rank on a surge index (a severity-weighted measure of COVID-19 caseload relative to pre-COVID-19 bed capacity). The effect of surge index on risk-adjusted odds ratio (aOR) of in-hospital mortality or discharge to hospice was calculated using hierarchical modeling; interaction by surge attributes was assessed. RESULTS: Of 144 116 inpatients with COVID-19 at 558 U.S. hospitals, 78 144 (54.2%) were admitted to hospitals in the top surge index decile. Overall, 25 344 (17.6%) died; crude COVID-19 mortality decreased over time across all surge index strata. However, compared with nonsurging (<50th surge index percentile) hospital-months, aORs in the 50th to 75th, 75th to 90th, 90th to 95th, 95th to 99th, and greater than 99th percentiles were 1.11 (95% CI, 1.01 to 1.23), 1.24 (CI, 1.12 to 1.38), 1.42 (CI, 1.27 to 1.60), 1.59 (CI, 1.41 to 1.80), and 2.00 (CI, 1.69 to 2.38), respectively. The surge index was associated with mortality across ward, intensive care unit, and intubated patients. The surge-mortality relationship was stronger in June to August than in March to May (slope difference, 0.10 [CI, 0.033 to 0.16]) despite greater corticosteroid use and more judicious intubation during later and higher-surging months. Nearly 1 in 4 COVID-19 deaths (5868 [CI, 3584 to 8171]; 23.2%) was potentially attributable to hospitals strained by surging caseload. LIMITATION: Residual confounding. CONCLUSION: Despite improvements in COVID-19 survival between March and August 2020, surges in hospital COVID-19 caseload remained detrimental to survival and potentially eroded benefits gained from emerging treatments. Bolstering preventive measures and supporting surging hospitals will save many lives. PRIMARY FUNDING SOURCE: Intramural Research Program of the National Institutes of Health Clinical Center, the National Institute of Allergy and Infectious Diseases, and the National Cancer Institute.


Subject(s)
COVID-19/mortality , Hospitalization/statistics & numerical data , Adrenal Cortex Hormones/therapeutic use , Adult , COVID-19/therapy , Critical Care/statistics & numerical data , Female , Hospital Bed Capacity/statistics & numerical data , Hospital Mortality , Humans , Male , Odds Ratio , Respiration, Artificial , Retrospective Studies , Risk Assessment , Risk Factors , SARS-CoV-2 , Survival Rate , United States/epidemiology
9.
Crit Care Med ; 50(7): 1051-1062, 2022 07 01.
Article in English | MEDLINE | ID: covidwho-1752195

ABSTRACT

OBJECTIVES: Prior research has hypothesized the Sequential Organ Failure Assessment (SOFA) score to be a poor predictor of mortality in mechanically ventilated patients with COVID-19. Yet, several U.S. states have proposed SOFA-based algorithms for ventilator triage during crisis standards of care. Using a large cohort of mechanically ventilated patients with COVID-19, we externally validated the predictive capacity of the preintubation SOFA score for mortality prediction with and without other commonly used algorithm elements. DESIGN: Multicenter, retrospective cohort study using electronic health record data. SETTING: Eighty-six U.S. health systems. PATIENTS: Patients with COVID-19 hospitalized between January 1, 2020, and February 14, 2021, and subsequently initiated on mechanical ventilation. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Among 15,122 mechanically ventilated patients with COVID-19, SOFA score alone demonstrated poor discriminant accuracy for inhospital mortality in mechanically ventilated patients using the validation cohort (area under the receiver operating characteristic curve [AUC], 0.66; 95% CI, 0.65-0.67). Discriminant accuracy was even poorer using SOFA score categories (AUC, 0.54; 95% CI, 0.54-0.55). Age alone demonstrated greater discriminant accuracy for inhospital mortality than SOFA score (AUC, 0.71; 95% CI, 0.69-0.72). Discriminant accuracy for mortality improved upon addition of age to the continuous SOFA score (AUC, 0.74; 95% CI, 0.73-0.76) and categorized SOFA score (AUC, 0.72; 95% CI, 0.71-0.73) models, respectively. The addition of comorbidities did not substantially increase model discrimination. Of 36 U.S. states with crisis standards of care guidelines containing ventilator triage algorithms, 31 (86%) feature the SOFA score. Of these, 25 (81%) rely heavily on the SOFA score (12 exclusively propose SOFA; 13 place highest weight on SOFA or propose SOFA with one other variable). CONCLUSIONS: In a U.S. cohort of over 15,000 ventilated patients with COVID-19, the SOFA score displayed poor predictive accuracy for short-term mortality. Our findings warrant reappraisal of the SOFA score's implementation and weightage in existing ventilator triage pathways in current U.S. crisis standards of care guidelines.


Subject(s)
COVID-19 , Organ Dysfunction Scores , Algorithms , Delivery of Health Care , Electronic Health Records , Hospital Mortality , Humans , Intensive Care Units , Prognosis , ROC Curve , Retrospective Studies , Triage , Ventilators, Mechanical
11.
Clin Infect Dis ; 74(8): 1489-1492, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1704507

ABSTRACT

In a retrospective cohort study, among 131 773 patients with previous coronavirus disease 2019 (COVID-19), reinfection with severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) was suspected in 253 patients (0.2%) at 238 US healthcare facilities between 1 June 2020 and 28 February 2021. Women displayed a higher cumulative reinfection risk. Healthcare burden and illness severity were similar between index and reinfection encounters.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Delivery of Health Care , Female , Humans , Incidence , Reinfection , Retrospective Studies
12.
MMWR Morb Mortal Wkly Rep ; 71(1): 19-25, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1608771

ABSTRACT

Vaccination against SARS-CoV-2, the virus that causes COVID-19, is highly effective at preventing COVID-19-associated hospitalization and death; however, some vaccinated persons might develop COVID-19 with severe outcomes† (1,2). Using data from 465 facilities in a large U.S. health care database, this study assessed the frequency of and risk factors for developing a severe COVID-19 outcome after completing a primary COVID-19 vaccination series (primary vaccination), defined as receipt of 2 doses of an mRNA vaccine (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) or a single dose of JNJ-78436735 [Janssen (Johnson & Johnson)] ≥14 days before illness onset. Severe COVID-19 outcomes were defined as hospitalization with a diagnosis of acute respiratory failure, need for noninvasive ventilation (NIV), admission to an intensive care unit (ICU) including all persons requiring invasive mechanical ventilation, or death (including discharge to hospice). Among 1,228,664 persons who completed primary vaccination during December 2020-October 2021, a total of 2,246 (18.0 per 10,000 vaccinated persons) developed COVID-19 and 189 (1.5 per 10,000) had a severe outcome, including 36 who died (0.3 deaths per 10,000). Risk for severe outcomes was higher among persons who were aged ≥65 years, were immunosuppressed, or had at least one of six other underlying conditions. All persons with severe outcomes had at least one of these risk factors, and 77.8% of those who died had four or more risk factors. Severe COVID-19 outcomes after primary vaccination are rare; however, vaccinated persons who are aged ≥65 years, are immunosuppressed, or have other underlying conditions might be at increased risk. These persons should receive targeted interventions including chronic disease management, precautions to reduce exposure, additional primary and booster vaccine doses, and effective pharmaceutical therapy as indicated to reduce risk for severe COVID-19 outcomes. Increasing COVID-19 vaccination coverage is a public health priority.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/complications , COVID-19/prevention & control , Hospitalization/statistics & numerical data , Vaccination/statistics & numerical data , Adult , Aged , Critical Care/statistics & numerical data , Databases, Factual , Death , Female , Humans , Male , Middle Aged , Respiration, Artificial , Respiratory Insufficiency/complications , Risk Factors , SARS-CoV-2/immunology , United States/epidemiology , Young Adult
13.
Open Forum Infect Dis ; 9(1): ofab599, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1608608

ABSTRACT

BACKGROUND: Clinical severity of coronavirus disease 2019 (COVID-19) may vary over time; trends in clinical severity at admission during the pandemic among hospitalized patients in the United States have been incompletely described, so a historical record of severity over time is lacking. METHODS: We classified 466677 hospital admissions for COVID-19 from April 2020 to April 2021 into 4 mutually exclusive severity grades based on indicators present on admission (from most to least severe): Grade 4 included intensive care unit (ICU) admission and invasive mechanical ventilation (IMV); grade 3 included non-IMV ICU and/or noninvasive positive pressure ventilation; grade 2 included diagnosis of acute respiratory failure; and grade 1 included none of the above indicators. Trends were stratified by sex, age, race/ethnicity, and comorbid conditions. We also examined severity in states with high vs low Alpha (B.1.1.7) variant burden. RESULTS: Severity tended to be lower among women, younger adults, and those with fewer comorbidities compared to their counterparts. The proportion of admissions classified as grade 1 or 2 fluctuated over time, but these less-severe grades comprised a majority (75%-85%) of admissions every month. Grades 3 and 4 consistently made up a minority of admissions (15%-25%), and grade 4 showed consistent decreases in all subgroups, including states with high Alpha variant burden. CONCLUSIONS: Clinical severity among hospitalized patients with COVID-19 has varied over time but has not consistently or markedly worsened over time. The proportion of admissions classified as grade 4 decreased in all subgroups. There was no consistent evidence of worsening severity in states with higher vs lower Alpha prevalence.

14.
Clin Infect Dis ; 73(Suppl 1): S5-S16, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1364773

ABSTRACT

BACKGROUND: Late sequelae of COVID-19 have been reported; however, few studies have investigated the time course or incidence of late new COVID-19-related health conditions (post-COVID conditions) after COVID-19 diagnosis. Studies distinguishing post-COVID conditions from late conditions caused by other etiologies are lacking. Using data from a large administrative all-payer database, we assessed type, association, and timing of post-COVID conditions following COVID-19 diagnosis. METHODS: Using the Premier Healthcare Database Special COVID-19 Release (release date, 20 October 2020) data, during March-June 2020, 27 589 inpatients and 46 857 outpatients diagnosed with COVID-19 (case-patients) were 1:1 matched with patients without COVID-19 through the 4-month follow-up period (control-patients) by using propensity score matching. In this matched-cohort study, adjusted ORs were calculated to assess for late conditions that were more common in case-patients than control-patients. Incidence proportion was calculated for conditions that were more common in case-patients than control-patients during 31-120 days following a COVID-19 encounter. RESULTS: During 31-120 days after an initial COVID-19 inpatient hospitalization, 7.0% of adults experienced ≥1 of 5 post-COVID conditions. Among adult outpatients with COVID-19, 7.7% experienced ≥1 of 10 post-COVID conditions. During 31-60 days after an initial outpatient encounter, adults with COVID-19 were 2.8 times as likely to experience acute pulmonary embolism as outpatient control-patients and also more likely to experience a range of conditions affecting multiple body systems (eg, nonspecific chest pain, fatigue, headache, and respiratory, nervous, circulatory, and gastrointestinal symptoms) than outpatient control-patients. CONCLUSIONS: These findings add to the evidence of late health conditions possibly related to COVID-19 in adults following COVID-19 diagnosis and can inform healthcare practice and resource planning for follow-up COVID-19 care.


Subject(s)
COVID-19 , Outpatients , Adult , COVID-19 Testing , Cohort Studies , Humans , Inpatients , SARS-CoV-2 , United States/epidemiology
16.
Open Forum Infect Dis ; 8(2): ofaa616, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-1069291

ABSTRACT

We report off-label use patterns for medications repurposed for coronavirus disease 2019 (COVID-19) at 318 US hospitals. Inpatient hydroxychloroquine use declined by 80%, whereas corticosteroids and tocilizumab were initiated 2 days earlier in May versus March 2020. Two thirds of ventilated COVID-19 patients were already receiving corticosteroids during March-May 2020, resembling pre-COVID use in mechanically ventilated influenza patients.

SELECTION OF CITATIONS
SEARCH DETAIL